SHRI VENKATESHWARA UNIVERSITY

SCHOOL OF ENGINEERING & TECHNOLOGY

Syllabus

B.TECH
(Civil Engineering)
IV SEMESTER
(Four Years Degree Programme)
Batch 2019-23
(w.e.f. 2019-20)
<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Subject Codes</th>
<th>Subject</th>
<th>Periods</th>
<th>Evaluation Scheme</th>
<th>End Semester Total</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td>CT TA Tota 1 PS TE PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SCE-401</td>
<td>Instrumentation & Sensor Technologies for Civil Engineering Applications</td>
<td>1 1 0</td>
<td>20 10 30</td>
<td>70 100</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>SCE-402</td>
<td>Engineering Geology</td>
<td>1 0 0</td>
<td>20 10 30</td>
<td>70 100</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>SCE-403</td>
<td>Introduction to Fluid Mechanics</td>
<td>2 0 0</td>
<td>20 10 30</td>
<td>70 100</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>SCE-404</td>
<td>Surveying & Geomatics</td>
<td>1 1 0</td>
<td>20 10 30</td>
<td>70 100</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>SCE-405</td>
<td>Materials, Testing & Evaluation</td>
<td>1 1 0</td>
<td>20 10 30</td>
<td>70 100</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>SCE-406</td>
<td>Mechanical Engineering</td>
<td>2 1 0</td>
<td>20 10 30</td>
<td>70 100</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>SCE-407</td>
<td>Introduction to Solid Mechanics</td>
<td>2 0 0</td>
<td>20 10 30</td>
<td>70 100</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>SCE-408</td>
<td>Disaster Preparedness & Planning</td>
<td>1 1 0</td>
<td>20 10 30</td>
<td>70 100</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>SCE-409</td>
<td>Civil Engineering - Societal & Global Impact</td>
<td>2 0 0</td>
<td>20 10 30</td>
<td>70 100</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>SCE-411</td>
<td>Instrumentation & Sensor Technologies for Civil Engineering Applications Lab</td>
<td>0 0 2</td>
<td>25</td>
<td>50 1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>SCE-412</td>
<td>Engineering Geology Lab</td>
<td>0 0 2</td>
<td>25</td>
<td>50 1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>SCE-413</td>
<td>Introduction to Fluid Mechanics Lab</td>
<td>0 0 2</td>
<td>25</td>
<td>50 1</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>SCE-414</td>
<td>Surveying & Geomatics Lab</td>
<td>0 0 2</td>
<td>25</td>
<td>50 1</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>SCE-415</td>
<td>Materials, Testing & Evaluation Lab</td>
<td>0 0 2</td>
<td>25</td>
<td>50 1</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>SNM-101</td>
<td>Environmental Sciences</td>
<td>3 0 0</td>
<td>20 10 30</td>
<td>70 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Environmental Sciences -Noncredit Mandatory courses</td>
<td></td>
<td></td>
<td>1150 23</td>
<td></td>
</tr>
</tbody>
</table>
The course is designed to provide a better understanding of the impact which Civil Engineering has on the Society at large and on the global arena. Civil Engineering projects have an impact on the Infrastructure, Energy consumption and generation, Sustainability of the Environment, Aesthetics of the environment, Employment creation, Contribution to the GDP, and on a more perceptible level, the Quality of Life. It is important for the civil engineers to realise the impact which this field has and take appropriate precautions to ensure that the impact is not adverse but beneficial.

The course covers:
- Awareness of the importance of Civil Engineering and the impact it has on the Society and at global levels
- Awareness of the impact of Civil Engineering for the various specific fields of human endeavour
- Need to think innovatively to ensure Sustainability

Module 1: Introduction to Course and Overview; Understanding the past to look into the future: Pre-industrial revolution days, Agricultural revolution, first and second industrial revolutions, IT revolution; Recent major Civil Engineering breakthroughs and innovations; Present day world and future projections, Ecosystems in Society and in Nature; the steady erosion in Sustainability; Global warming, its impact and possible causes; Evaluating future requirements for various resources; GIS and applications for monitoring systems; Human Development Index and Ecological Footprint of India Vs other countries and analysis;

Module 2: Understanding the importance of Civil Engineering in shaping and impacting the world; The ancient and modern Marvels and Wonders in the field of Civil Engineering; Future Vision for Civil Engineering

Module 3: Infrastructure - Habitats, Megacities, Smart Cities, futuristic visions; Transportation (Roads, Railways & Metros, Airports, Seaports, River ways, Sea canals, Tunnels (below ground, under water); Futuristic systems (ex, Hyper Loop)); Energy generation (Hydro, Solar (Photovoltaic, Solar Chimney), Wind, Wave, Tidal, Geothermal, Thermal energy); Water provisioning; Telecommunication needs (towers, above-ground and underground cabling); Awareness of various Codes & Standards governing Infrastructure development; Innovations and methodologies for ensuring Sustainability;

Module 4: Environment- Traditional & futuristic methods; Solid waste management, Water purification, Wastewater treatment & Recycling, Hazardous waste treatment; Flood control (Dams, Canals, River interlinking), Multi-purpose water projects, Atmospheric pollution; Global warming phenomena and Pollution Mitigation measures, Stationarity and non-stationarity; Environmental Metrics & Monitoring; Other Sustainability measures; Innovations and methodologies for ensuring Sustainability.
Module 5: Built environment – Facilities management, Climate control; Energy efficient built environments and LEED ratings, Recycling, Temperature/ Sound control in built environment, Security systems; Intelligent/ Smart Buildings; Aesthetics of built environment, Role of Urban Arts Commissions; Conservation, Repairs & Rehabilitation of Structures
Heritage structures; Innovations and methodologies for ensuring Sustainability

Module 6: Civil Engineering Projects – Environmental Impact Analysis procedures; Waste (materials, manpower, equipment) avoidance/ Efficiency increase; Advanced construction techniques for better sustainability; Techniques for reduction of Green House Gas emissions in various aspects of Civil Engineering Projects; New Project Management paradigms & Systems (Ex. Lean Construction), contribution of Civil Engineering to GDP, Contribution to employment(projects, facilities management), Quality of products, Health & Safety aspects for stakeholders; Innovations and methodologies for ensuring Sustainability during Project development;

ORGANISATION OF COURSE (2-0-0)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Module</th>
<th>No of Lectures</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Understanding the Importance of Civil Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Infrastructure</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Environment</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Built Environment</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Civil Engineering Projects</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Text/Reference Books:

What the student will learn? To develop an understanding of:
☐ The impact which Civil Engineering projects have on the Society at large and on the global arena and using resources efficiently and effectively.
☐ The extent of Infrastructure, its requirements for energy and how they are met: past, present and future
☐ The Sustainability of the Environment, including its Aesthetics,
☐ The potentials of Civil Engineering for Employment creation and its Contribution to the GDP
☐ The Built Environment and factors impacting the Quality of Life
☐ The precautions to be taken to ensure that the above-mentioned impacts are not adverse but beneficial.
☐ Applying professional and responsible judgement and take a leadership role;
The overall aim of this course is to provide broad understanding about the basic concept of Disaster Management with preparedness as a Civil Engineer. Further, the course introduces the various natural hazards that can pose risk to property, lives, and livestock, etc. and understanding of the social responsibility as an engineer towards preparedness as well as mitigating the damages.

The objectives of the course are i) To Understand basic concepts in Disaster Management ii) To Understand Definitions and Terminologies used in Disaster Management iii) To Understand Types and Categories of Disasters iv) To Understand the Challenges posed by Disasters v) To understand Impacts of Disasters

Key Skills

Proposed Syllabus

Module 2: Disasters - Disasters classification; natural disasters (floods, draught, cyclones, volcanoes, earthquakes, tsunami, landslides, coastal erosion, soil erosion, forest fires etc.); manmade disasters (industrial pollution, artificial flooding in urban areas, nuclear radiation, chemical spills, transportation accidents, terrorist strikes, etc.); hazard and vulnerability profile of India, mountain and coastal areas, ecological fragility.

Module 3: Disaster Impacts - Disaster impacts (environmental, physical, social, ecological, economic, political, etc.); health, psycho-social issues; demographic aspects (gender, age, special needs); hazard locations; global and national disaster trends; climate change and urban disasters.

Module 4: Disaster Risk Reduction (DRR) - Disaster management cycle – its phases; prevention, mitigation, preparedness, relief and recovery; structural and non-structural measures; risk analysis, vulnerability and capacity assessment; early warning systems, Post-disaster environmental response (water, sanitation, food safety, waste management, disease control, security, communications); Roles and responsibilities of government, community, local institutions, NGOs and other stakeholders; Policies and legislation for disaster risk reduction, DRR programmes in India and the activities of National Disaster Management Authority.

Module 5: Disasters, Environment and Development - Factors affecting vulnerability such as impact of developmental projects and environmental modifications (including of dams, land-use changes, urbanization etc.), sustainable and environmental friendly recovery;
reconstruction and development methods.

Text/Reference Books:
1. http://ndma.gov.in/ (Home page of National Disaster Management Authority)
5. Ghosh G.K., 2006, Disaster Management, APH Publishing Corporation

Outcomes:
The student will develop competencies in
- the application of Disaster Concepts to Management
- Analyzing Relationship between Development and Disasters.
- Ability to understand Categories of Disasters and
- realization of the responsibilities to society
The objective of this Course is to focus on the core activities of engineering geologists – site characterization and geologic hazard identification and mitigation. Through lectures, labs, and case study examination student will learn to couple geologic expertise with the engineering properties of rock and unconsolidated materials in the characterization of geologic sites for civil work projects and the quantification of processes such as rock slides, soil-slope stability, settlement, and liquefaction.

Engineering geology is an applied geology discipline that involves the collection, analysis, and interpretation of geological data and information required for the safe development of civil works. Engineering geology also includes the assessment and mitigation of geologic hazards such earthquakes, landslides, flooding; the assessment of timber harvesting impacts; and groundwater remediation and resource evaluation. Engineering geologists are applied geoscientists with an awareness of engineering principles and practice—they are not engineers.

Proposed Syllabus:

Module 1: Introduction-Branches of geology useful to civil engineering, scope of geological studies in various civil engineering projects. Department dealing with this subject in India and their scope of work- GSI, Granite Dimension Stone Cell, NIRM. Mineralogy-Mineral, Origin and composition. Physical properties of minerals, susceptibility of minerals to alteration, basic of optical mineralogy, SEM, XRD., Rock forming minerals, megascopic identification of common primary & secondary minerals.

Module 6: Rock masses as construction material: Definition of Rock masses. Main features constituting rock mass. Main features that affects the quality of rock engineering and design. Basic element and structures of rock those are relevant in civil engineering areas. Main types of works connected to rocks and rock masses. Important variables influencing rock properties and behavior such as Fresh rock Influence from some minerals. Effect of alteration and weathering. Measurement of velocity of sound in rock. Classification of Rock material strength. Core logging. Rock Quality Designation. Rock mass description.

Module 7: Geology of dam and reservoir site - Required geological consideration for selecting dam and reservoir site. Failure of Reservoir. Favorable & unfavorable conditions in different types of rocks in presence of various structural features, precautions to be taken to counteract unsuitable conditions, significance of discontinuities on the dam site and treatment giving to such structures.

Module 8: Rock Mechanics - Sub surface investigations in rocks and engineering characteristics or rocks masses; Structural geology of rocks. Classification of rocks, Field & laboratory tests on rocks, Stress deformation of rocks, Failure theories and sheer strength of rocks, Bearing capacity of rocks.

Practicals:
1. Study of physical properties of minerals.
2. Study of different group of minerals.
3. Study of Crystal and Crystalsystem.
4. Identification of minerals: Silica group: Quartz, Amethyst, Opal; Feldspar group: Orthoclase, Plagioclase; Cryptocrystalline group: Jasper; Carbonate group: Calcite; Element group: Graphite; Pyroxene group: Talc; Mica group: Muscovite; Amphibole
group: Asbestos, Olivine, Hornblende, Magnetite, Hematite, Corundum, Kyanite, Garnet, Galena, Gypsum.

Text/Reference Books:

What will I learn?
Students will be able to:
- Use suitable software to examine geology, soil, geologic hazard, and NEHRP data to characterize a geologic site.
- Calculate the bulk properties of rocks and unconsolidated sediments such as density, void ratio, water contents, and unit weights.
- Evaluate rock-mass quality and perform a kinematic analysis.
- Apply the factor of safety equation to solve planar rock slide and toppling problems.
- Perform a grain-size analysis, determine plastic and liquid limits, and classify soils using the Unified Soil Classification System.
- Calculate soil consolidation magnitudes and rates under induced stress conditions.
- Determine soil strength parameters from in situ tests.
- Apply the method of slices and factor of safety equation to solve rotational slide problems.

Outcomes:
Students will understand:

i) Site characterization and how to collect, analyze, and report geologic data using standards in engineering practice.

ii) The fundamentals of the engineering properties of Earth materials and fluids.

iii) Rock mass characterization and the mechanics of planar rock slides and topples.

iv) Soil characterization and the Unified Soil Classification System.

v) The mechanics of soils and fluids and their influence on settlement, liquefaction, and soil slope stability.

The objective of this course is to understand instrumentation, sensor theory and technology, data acquisition, digital signal processing, damage detection algorithm, lifetime analysis and decision making. This course introduces theoretical and practical principles of design of sensor systems. Topics include: transducer characteristics for acoustic, current, temperature, pressure, electric, magnetic, gravity, salinity, concentration of contaminants, velocity, heat flow, and optical devices; limitations on these devices imposed by building/structure/pavement environments; signal conditioning and recording; noise, sensitivity, and sampling limitations; and standards. Lectures will cover the principles of state-of-the-art systems being used in physical infrastructure/bridges/buildings/pavements, etc. For lab work, the course will allow students to prepare, deploy and analyze observations from standard instruments. Laboratory experiments shall be used on application of concepts introduced in the lectures. Providing principle knowledge, practical training and measurement best practice for a range of temperature, pressure, electrical, velocity, acceleration and vibration systems.

Proposed Syllabus

Module 1: Fundamentals of Measurement, Sensing and Instrumentation covering definition of measurement and instrumentation, physical variables, common types of sensors; Describe the function of these sensors; Use appropriate terminology to discuss sensor applications; and qualitatively interpret signals from a known sensor type, types of instrumentation, Sensor Specifics, Permanent installations, Temporary installations;

Module 2: Sensor Installation and Operation covering to: i) Predict the response of sensors to various inputs; ii) Construct a conceptual instrumentation and monitoring program; iii) Describe the order and methodology for sensor installation; and iv) Differentiate between types of sensors and their modes of operation and measurement and v) Approach to Planning Monitoring Programs, Define target, Sensor selection, Sensor siting, Sensor Installation & Configuration, Advanced topic, Sensor design, Measurement uncertainty

Module 3: Data Analysis and Interpretation covering a) Fundamental statistical concepts, b) Data reduction and interpretation, c) Piezometer, Inclinometer, Strain gauge, etc. d) Time domain signal processing, e) Discrete signals, Signals and noise and f) a few examples of statistical information to calculate are: Average value (mean), On average, how much each measurement deviates from the mean (standard deviation), Midpoint between the lowest and highest value of the set (median), Most frequently occurring value (mode), Span of values over which your data set occurs (range)

Module 4: Frequency Domain Signal Processing and Analysis covering Explain the need for frequency domain analysis and its principles; Draw conclusions about physical processes based on analysis of sensor data; Combine signals in a meaningful way to gain deeper insight into physical phenomena, Basic concepts in frequency domain signal processing and analysis, Fourier Transform, FFT (Fast Fourier Transform), Example problems: Noise reduction with filters, Leakage, Frequency resolution
Tutorials from the above modules demonstrating clearly the understanding and use for the sensors and instruments used for the problems posed and inferences drawn from the measurement and observations made along with evaluation report

Practicals:
- Instrumentation of typical civil engineering members/structures/structural elements
- Use of different sensors, strain gauges, inclinometers,
- Performance characteristics
- Errors during the measurement process
- Calibration of measuring sensors and instruments
- Measurement, noise and signal processing
- Analog Signal processing
- Digital Signal Processing
- Demonstration & use of sensor technologies

Text/Reference Books:
1. Alan S Morris (2001), Measurement and Instrumentation Principles, 3rd/e, Butterworth Hienemann
2. David A. Bell (2007), Electronic Instrumentation and Measurements 2nd/e, Oxford Press

What will I learn?
- Understand the principles of operation and characteristics of instrumentation and integrated sensor systems
- Understand right use of sensors and instruments for differing applications along with limitations
- Recognize and apply measurement best practice and identify ways to improve measurement and evaluation
- Troubleshoot and solve problems in instrumentation and measurement systems
- To instill and encourage a questioning culture

Outcomes:
- To analyze the errors during measurements
- To specify the requirements in the calibration of sensors and instruments
- To describe the noise added during measurements and transmission
- To describe the measurement of electrical variables
- To describe the requirements during the transmission of measured signals
- To construct Instrumentation/Computer Networks
- To suggest proper sensor technologies for specific applications
- To design and set up measurement systems and do the studies
The objective of this course is to introduce the concepts of fluid mechanics useful in Civil Engineering applications. The course provides a first level exposure to the students to fluid statics, kinematics and dynamics. Measurement of pressure, computations of hydrostatic forces on structural components and the concepts of Buoyancy all find useful applications in many engineering problems. A training to analyse engineering problems involving fluids – such as those dealing with pipe flow, open channel flow, jets, turbines and pumps, dams and spillways, culverts, river and groundwater flow - with a mechanistic perspective is essential for the civil engineering students. The topics included in this course are aimed to prepare a student to build a good fundamental background useful in the application-intensive courses covering hydraulics, hydraulic machinery and hydrology in later semesters.

Module 1: Basic Concepts and Definitions – Distinction between a fluid and a solid; Density, Specific weight, Specific gravity, Kinematic and dynamic viscosity; variation of viscosity with temperature, Newton law of viscosity; vapour pressure, boiling point, cavitation; surface tension, capillarity, Bulk modulus of elasticity, compressibility.

Module 2: Fluid Statics - Fluid Pressure: Pressure at a point, Pascals law, pressure variation with temperature, density and altitude. Piezometer, U-Tube Manometer, Single Column Manometer, U-Tube Differential Manometer, Micromanometers. pressure gauges, Hydrostatic pressure and force: horizontal, vertical and inclined surfaces. Buoyancy and stability of floating bodies.

Module 3: Fluid Kinematics- Classification of fluid flow : steady and unsteady flow; uniform and non-uniform flow; laminar and turbulent flow; rotational and irrotational flow; compressible and incompressible flow; ideal and real fluid flow; one, two and three dimensional flows; Stream line, path line, streak line and stream tube; stream function, velocity potential function. One-, two- and three -dimensional continuity equations in Cartesian coordinates

Module 4: Fluid Dynamics- Surface and body forces; Equations of motion - Euler’s equation; Bernoulli’s equation – derivation; Energy Principle; Practical applications of Bernoulli’s equation : venturi meter, orifice meter and pitot tube; Momentum principle; Forces exerted by fluid flow on pipe bend; Vortex Flow – Free and Forced; Dimensional Analysis and Dynamic Similitude - Definitions of Reynolds Number, Froude Number, Mach Number, Weber Number and Euler Number; Buckingham’s π-Theorem.

Lab Experiments
1. Measurement of viscosity
2. Study of Pressure Measuring Devices
3. Stability of Floating Body
4. Hydrostatics Force on Flat Surfaces/Curved Surfaces
5. Verification of Bernoulli’s Theorem
6. Venturimeter
7. Orifice meter
8. Impacts of jets
9. Flow Visualisation -Ideal Flow
10. Length of establishment of flow
11. Velocity distribution in pipes
12. Laminar Flow

Text/Reference Books:

At the end of the course, the student will be able to:
- Understand the broad principles of fluid statics, kinematics and dynamics
- Understand definitions of the basic terms used in fluid mechanics
- Understand classifications of fluid flow
- Be able to apply the continuity, momentum and energy principles
- Be able to apply dimensional analysis
Course Code :
Course Title : Introduction to Solid Mechanics
Number of Credits : 3 (L: 1, T: 0, P: 2)
Prerequisites : NIL
Course Category : PC

The objective of this Course is to introduce to continuum mechanics and material modelling of engineering materials based on first energy principles: deformation and strain; momentum balance, stress and stress states; elasticity and elasticity bounds; plasticity and yield design. The overarching theme is a unified mechanistic language using thermodynamics, which allows understanding, modelling and design of a large range of engineering materials. The subject of mechanics of materials involves analytical methods for determining the strength, stiffness (deformation characteristics), and stability of the various members in a structural system. The behaviour of a member depends not only on the fundamental laws that govern the equilibrium of forces, but also on the mechanical characteristics of the material. These mechanical characteristics come from the laboratory, where materials are tested under accurately known forces and their behaviour is carefully observed and measured. For this reason, mechanics of materials is a blended science of experiment and Newtonian postulates of analytical mechanics.

Proposed Syllabus

Module 2: Compound Stresses and Strains - Two dimensional system, stress at a point on a plane, principal stresses and principal planes, Mohr circle of stress, ellipse of stress and their applications. Two dimensional stress-strain system, principal strains and principal axis of strain, circle of strain and ellipse of strain. Relationship between elastic constants.

Module 3: Bending moment and Shear Force Diagrams - Bending moment (BM) and shear force (SF) diagrams. BM and SF diagrams for cantilevers simply supported and fixed beams with or without overhangs. Calculation of maximum BM and SF and the point of contra flexure under concentrated loads, uniformly distributed loads over the whole span or part of span, combination of concentrated loads (two or three) and uniformly distributed loads, uniformly varying loads, application of moments.

Module 5: Shear Stresses - Derivation of formula – Shear stress distribution across various beam sections like rectangular, circular, triangular, I, T angle sections.
Module 6: Slope and deflection - Relationship between moment, slope and deflection, Moment area method, Macaulay’s method. Use of these methods to calculate slope and deflection for determinant beams.

Module 7: Torsion - Derivation of torsion equation and its assumptions. Applications of the equation of the hollow and solid circular shafts, torsional rigidity, Combined torsion and bending of circular shafts, principal stress and maximum shear stresses under combined loading of bending and torsion. Analysis of close-coiled-helical springs.

Module 8: Thin Cylinders and Spheres - Derivation of formulae and calculations of hoop stress, longitudinal stress in a cylinder, and sphere subjected to internal pressures.

List of Experiments:
- Tension test
- Bending tests on simply supported beam and Cantilever beam.
- Compression test on concrete
- Impact test
- Shear test
- Investigation of Hook’s law that is the proportional relation between force and stretching in elastic deformation,
- Determination of torsion and deflection,
- Measurement of forces on supports in statically determinate beam,
- Determination of shear forces in beams,
- Determination of bending moments in beams,
- Measurement of deflections in statically determinate beam,
- Measurement of strain in a bar
- Bend test steel bar;
- Yield/tensile strength of steel bar;

Text/Reference Books:

Outcomes:
On completion of the course, the student will be able to:
- Describe the concepts and principles, understand the theory of elasticity including strain/displacement and Hooke’s law relationships; and perform calculations, relative to the strength and stability of structures and mechanical components;
- Define the characteristics and calculate the magnitude of combined stresses in individual members and complete structures; analyze solid mechanics problems using classical methods and energy methods;
- Analyze various situations involving structural members subjected to combined stresses by application of Mohr's circle of stress; locate the shear center of thin wall beams; and
- Calculate the deflection at any point on a beam subjected to a combination of loads; solve for stresses and deflections of beams under unsymmetrical loading; apply various failure criteria for general stress states at points; solve torsion problems in bars and thin walled members;
The objective of this Course is to deal with an experimental determination and evaluation of mechanical characteristics and advanced behavior of metallic and non-metallic structural materials. The course deals with explanation of deformation and fracture behavior of structural materials. The main goal of this course is to provide students with all information concerning principle, way of measurement, as well as practical application of mechanical characteristics.

- Make measurements of behavior of various materials used in Civil Engineering.
- Provide physical observations to complement concepts learnt
- Introduce experimental procedures and common measurement instruments, equipment, devices.
- Exposure to a variety of established material testing procedures and techniques
- Different methods of evaluation and inferences drawn from observations

The course reviews also the current testing technology and examines force applications systems, force measurement, strain measurement, important instrument considerations, equipment for environmental testing, and computers applications for materials testing provide an introductory treatment of basic skills in material engineering towards (i) selecting material for the design, and (ii) evaluating the mechanical and structural properties of material, as well as the knowledge necessary for a civil engineer. The knowledge acquired lays a good foundation for analysis and design of various civil engineering structures/systems in a reliable manner.

What will I learn?
- Different materials used in civil engineering applications
- Planning an experimental program, selecting the test configuration, selecting the test specimens and collecting raw data
- Documenting the experimental program including the test procedures, collected data, method of interpretation and final results
- Operating the laboratory equipment including the electronic instrumentation, the test apparatus and the data collection system
- Measuring physical properties of common structural and geotechnical construction materials
- Interpreting the laboratory data including conversion of the measurements into engineering values and derivation of material properties (strength and stiffness) from the engineering values
- Observing various modes of failure in compression, tension, and shear
- Observing various types of material behavior under similar loading conditions

Proposed Syllabus
Module 1: Introduction to Engineering Materials covering, Cements, M-Sand, Concrete
(plain, reinforced and steel fibre/ glass fibre-reinforced, light-weight concrete, High Performance Concrete, Polymer Concrete) Ceramics, and Refractories, Bitumen and asphaltic materials, Timbers, Glass and Plastics, Structural Steel and other Metals, Paints and Varnishes, Acoustical material and geo-textiles, rubber and asbestos, laminates and adhesives, Graphene, Carbon composites and other engineering materials including properties and uses of these

Module 2: Introduction to Material Testing covering, What is the “Material Engineering”?; Mechanical behavior and mechanical characteristics; Elasticity – principle and characteristics; Plastic deformation of metals; Tensile test – standards for different material (brittle, quasi-brittle, elastic and so on) True stress – strain interpretation of tensile test; hardness tests; Bending and torsion test; strength of ceramic; Internal friction, creep – fundamentals and characteristics; Brittle fracture of steel – temperature transition approach; Background of fracture mechanics; Discussion of fracture toughness testing – different materials; concept of fatigue of materials; Structural integrity assessment procedure and fracture mechanics

Module 3: Standard Testing & Evaluation Procedures covering, Laboratory for mechanical testing; Discussion about mechanical testing; Naming systems for various irons, steels and nonferrous metals; Discussion about elastic deformation; Plastic deformation; Impact test and transition temperatures; Fracture mechanics – background; Fracture toughness – different materials; Fatigue of material; Creep.

Practicals:
- Gradation of coarse and fine aggregates
- Different corresponding tests and need/application of these tests in design and quality control
- Tensile Strength of materials & concrete composites
- Compressive strength test on aggregates
- Tension I - Elastic Behaviour of metals & materials
- Tension II - Failure of Common Materials
- Direct Shear - Frictional Behaviour
- Concrete I - Early Age Properties
- Concrete II - Compression and Indirect Tension
- Compression – Directionality
- Soil Classification
- Consolidation and Strength Tests
- Tension III - Heat Treatment
- Torsion test
- Hardness tests (Brinnel’s and Rockwell)
- Tests on closely coiled and open coiled springs
- Theories of Failure and Corroboration with Experiments
- Tests on unmodified bitumen and modified binders with polymers
- Bituminous Mix Design and Tests on bituminous mixes - Marshall method
- Concrete Mix Design as per BIS

Text/Reference Books:
3. Various related updated & recent standards of BIS, IRC, ASTM, RILEM, AASHTO, etc. corresponding to materials used for Civil Engineering applications
7. Related papers published in international journals

Measurable Outcomes:
One should be able to:
- Calibrate electronic sensors
- Operate a data acquisition system
- Operate various types of testing machines
- Configure a testing machine to measure tension or compression behavior
- Compute engineering values (e.g. stress or strain) from laboratory measures
- Analyze a stress versus strain curve for modulus, yield strength and other related attributes
- Identify modes of failure
- Write a technical laboratory report

Module 3: Second Law of Thermodynamics- Thermal energy reservoirs, heat engines energy conversion, Kelvin’s and Clausius statements of second law, the Carnot cycle, the Carnot Theorem, the thermodynamic temperature scale, the Carnot heat engine, efficiency, the Carnot refrigerator and heat pump, COP. Clausius inequality, concept of entropy, principle of increase of entropy – availability, the increase of entropy principle, perpetual-motion machines, reversible and irreversible processes. Entropy change of pure substances, isentropic processes, property diagrams involving entropy, entropy change of liquids and solids, the entropy change of ideal gases, reversible steady-flow work, minimizing the compressor work, isentropic efficiencies of steady-flow devices, and entropy balance. Energy measure of work potential, including work potential of energy, reversible work and irreversibility, second-law efficiency, exergy change of a system, energy transfer by heat, work, and mass, the decrease of exergy principle and exergy destruction, energy balance: closed systems and control volumes energy balance.

Module 5: Power Cycles- Vapour and combined power cycles, including the Carnot vapor cycle, Rankine cycle: the ideal cycle for vapor power, the ideal reheat and regenerative and the second-law analysis of vapour power cycles. Gas power cycles, including basic considerations in the analysis of power cycles, the Carnot cycle and its value in engineering, an overview of reciprocating engines, air standard assumptions, gasoline engine Otto cycle, diesel engine cycle, gasturbine Brayton cycle, and the second-law analysis of gas power cycles.

Text/Reference Books:

Upon successful completion of the course, student will have:
- Ability to apply mathematics, science, and engineering
- Ability to design and conduct experiments, as well as to analyze and interpret data
- Ability to identify, formulate, and solve engineering problems
- Ability to apply modern engineering tools, techniques and resources to solve complex mechanical engineering activities with an understanding of the limitations.
- Ability to comprehend the thermodynamics and their corresponding processes that influence the behaviour and response of structural components
- Ability to apply principles of engineering, basic science, and mathematics (including multivariate calculus and differential equations) and thermodynamics to model, analyze, design, and realize physical systems, components, or processes
<table>
<thead>
<tr>
<th>Course Code</th>
<th>:</th>
</tr>
</thead>
</table>
| Course Title | : | Surveying and Geomatics
| Number of Credits | : | 3 (L: 1, T: 0, P: 2)
| Prerequisites | : | NIL

Course Objective
With the successful completion of the course, the student should have the capability to:

a) describe the function of surveying in civil engineering construction,
b) Work with survey observations, and perform calculations,
c) Customary units of measure. Identify the sources of measurement errors and mistakes; understand the difference between accuracy and precision as it relates to distance, differential leveling, and angular measurements,
d) Be familiar with the principals of recording accurate, orderly, complete, and logical field notes from surveying operations, whether recorded manually or with automatic data collection methods,
e) Identify and calculate the errors in measurements and to develop corrected values for differential level circuits, horizontal distances and angles for open or closed-loop traverses,
f) Operate an automatic level to perform differential and profile leveling; properly record notes; mathematically reduce and check levelling measurements,
g) Effectively communicate with team members during field activities; identify appropriate safety procedures for personal protection; properly handle and use measurement instruments. Be able to identify hazardous environments and take measures to insure one’s personal and team safety,
h) Measure horizontal, vertical, and zenith angles with a transit, theodolite, total station or survey grade GNSS instruments,
i) Calculate azimuths, latitudes and departures, error of closure; adjust latitudes and departures and determine coordinates for a closed traverse,
j) Perform traverse calculations; determine latitudes, departures, and coordinates of control points and balancing errors in a traverse. Use appropriate software for calculations and mapping,
k) Operate a total station to measure distance, angles, and to calculate differences in elevation. Reduce data for application in a geographic information system,
l) Work as a team member on a surveying party to achieve a common goal of accurate and timely project completion,
m) Calculate, design and layout horizontal and vertical curves, Understand, interpret, and prepare plan, profile, and cross-section drawings, Work with cross-sections and topographic maps to calculate areas, volumes, and earthwork quantities.

Proposed Syllabus:
Module 1: Introduction to Surveying (8 hours): Principles, Linear, angular and graphical methods, Survey stations, Survey lines- ranging, Bearing of survey lines, Levelling: Plane table surveying, Principles of levelling- booking and reducing levels; differential, reciprocal leveling, profile levelling and cross sectioning. Digital and Auto Level, Errors in levelling; contouring: Characteristics, methods, uses; areas and volumes.

Module 2: Curves (6 hours) Elements of simple and compound curves – Method of setting out – Elements of Reverse curve - Transition curve – length of curve – Elements of transition curve - Vertical curves

Module 3: Modern Field Survey Systems (8 Hours): Principle of Electronic Distance Measurement, Modulation, Types of EDM instruments, Distomat, Total Station – Parts of a Total Station – Accessories – Advantages and Applications, Field Procedure for total station survey, Errors in Total Station Survey; Global Positioning Systems- Segments, GPS measurements, errors and biases, Surveying with GPS, Co-ordinate transformation, accuracy considerations.

Module 4: Photogrammetry Surveying (8 Hours): Introduction, Basic concepts, perspective geometry of aerial photograph, relief and tilt displacements, terrestrial photogrammetry, flight planning; Stereoscopy, ground control extension for photographic mapping- aerial triangulation, radial triangulation, methods; photographic mapping- mapping using paper prints, mapping using stereoplotting instruments, mosaics, map substitutes.

Module 5: Remote Sensing (9 Hours): Introduction – Electromagnetic Spectrum, interaction of electromagnetic radiation with the atmosphere and earth surface, remote sensing data acquisition: platforms and sensors; visual image interpretation; digital image processing.

Text/Reference Books:
2. Manoj, K. Arora and Badjatia, Geomatics Engineering, Nem Chand & Bros, 2011

Outcomes:
The course will enable the students to:
- Apply the knowledge, techniques, skills, and applicable tools of the discipline to engineering and surveying activities
- Translate the knowledge gained for the implementation of Civil infrastructure facilities
- Relate the knowledge on Surveying to the new frontiers of science like Hydrographic surveying, Electronic Distance Measurement, Global Positioning System, Photogrammetry and Remote Sensing.